The Weil Proof and the Geometry of the Adeles Class Space

نویسندگان

  • ALAIN CONNES
  • MATILDE MARCOLLI
  • Yuri Manin
چکیده

Dedicated to Yuri Manin on the occasion of his 70th birthday O simili o dissimili che sieno questi mondi non con minor raggione sarebe bene a l'uno l'essere che a l'altro Giordano Bruno – De l'infinito, universo e mondi Contents 1. Introduction 2 2. A look at the Weil proof 4 2.1. Correspondences and divisors 6 2.2. The explicit formula 8 2.3. Riemann–Roch and positivity 9 2.4. A tentative dictionary 11 3. Quantum statistical mechanics and arithmetic 12 3.1. The Bost–Connes endomotive 14 3.2. Scaling as Frobenius in characteristic zero 15 4. The adeles class space 16 4.1. Cyclic module 17 4.2. The restriction map 17 4.3. The Morita equivalence and cokernel for K = Q 19 4.4. The cokernel of ρ for general global fields 20 4.5. Trace pairing and vanishing 24 5. Primitive cohomology 25 6. A cohomological Lefschetz trace formula 27 6.1. Weil's explicit formula as a trace formula 27 6.2. Weil Positivity and the Riemann Hypothesis 28 7. Correspondences 29 7.1. The scaling correspondence as Frobenius 29 7.2. Fubini's theorem and the trivial correspondences 31 8. Thermodynamics and geometry of the primes 33 8.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Weil Proof and the Geometry of the Adeles Class Space Alain Connes, Caterina Consani, and Matilde Marcolli

Dedicated to Yuri Manin on the occasion of his 70th birthday O simili o dissimili che sieno questi mondi non con minor raggione sarebe bene a l'uno l'essere che a l'altro Giordano Bruno – De l'infinito, universo e mondi Contents 1. Introduction 2 2. A look at the Weil proof 4 2.1. Correspondences and divisors 7 2.2. The explicit formula 8 2.3. Riemann–Roch and positivity 9 2.4. A tentative dict...

متن کامل

Trace Formula on the Adele Class Space and Weil Positivity

We shall rst show that the classi cation of factors, as seen in the unusual light of Andr e Weil's Basic Number Theory, is a natural substitute for the Brauer theory of central simple algebras in local class eld theory at Archimedian places. Passing to the global case provides a natural geometric framework in which the Frobenius, its eigenvalues and the Lefschetz formula interpretation of the e...

متن کامل

2 00 8 On the Siegel - Weil Theorem for Loop Groups ( I )

The notion of an snt-module and our extension (1.14) of the Siegel-Weil Theorem (also see Theorem 8.1, §8) grew out of our work on the SiegelWeil Theorem for arithmetic quotients of loop groups, which we prove in Part II of this paper ([3]). In fact (1.14) is a vital step in our proof of the Siegel-Weil theorem in the loop case, and as far as we know, it also seems to be a new result for automo...

متن کامل

The Weil-Petersson geometry of the five-times punctured sphere

We give a new proof that the completion of the Weil-Petersson metric on Teichmüller space is Gromov-hyperbolic if the surface is a five-times punctured sphere or a twice-punctured torus. Our methods make use of the synthetic geometry of the Weil-Petersson metric.

متن کامل

Zeta-functions and Ideal Classes of Quaternion Orders

Inspired by Stark’s analytic proof of the finiteness of the class number of a ring of integers in an algebraic number field, we give a new proof of the finiteness of the number of classes of ideals in a maximal order of a quaternion division algebra over a totally real number field. Previous proofs of this well-known result have used adeles or geometry of numbers, while our proof uses the class...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007